
Tree visitors in Clojure
Update the Java Visitor pattern with functional zippers

Skill Level: Intermediate

Alex Miller (alex@puredanger.com)
Senior Engineer
Revelytix

20 Sep 2011

JVM language explorer Alex Miller has recently discovered the benefits of
implementing the Visitor pattern using Clojure, a functional Lisp variant for the Java
Virtual Machine. In this article, he revisits the Visitor pattern, first demonstrating its
use in traversing tree data in Java programs, then rewriting it with the addition of
Clojure's functional zippers.

I’ve used trees of domain objects in my Java applications for many years. More
recently, I’ve been using them in Clojure. In each case, I've found that the Visitor
pattern is a reliable tool for manipulating trees of data. But there are differences in
how the pattern works in a functional versus object-oriented language, and in the
results it yields.

About Clojure
Clojure is a dynamic and functional programming language variant
of Lisp, written specifically for the JVM. Learn more about Clojure
on developerWorks:

• "The Clojure programming language"

• "Clojure and concurrency"

• "Solving the Expression Problem with Clojure 1.2"

• "Using CouchDB with Clojure"

In this article, I revisit domain trees and the Visitor pattern for the Java language,

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 1 of 27

mailto:alex@puredanger.com
http://www.ibm.com/developerworks/opensource/library/os-eclipse-clojure/
http://www.ibm.com/developerworks/java/library/wa-clojure/index.html
http://www.ibm.com/developerworks/java/library/j-clojure-protocols/
http://www.ibm.com/developerworks/java/library/j-couchdb-clojure/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

then walk through several visitor implementations using Clojure. Being a functional
language, Clojure brings new tricks to data query and manipulation. In particular, I've
found that integrating functional zippers into the Visitor pattern yields efficiency
benefits, which I explore.

Manipulating symbolic trees

One example of a symbolic tree is a representation of an SQL query plan, which has
operations like filter, join, union, and project. These operations work together to form
a series of computations from source data to produce the result of a query.

For example, the query in Listing 1 describes a join of the Dept and Employee
tables. The query filters some results where the department name is "IT" and returns
a concatenation of an employee’s first and last names. Its result should be the full
names of all employees in the IT department.

Listing 1. Example SQL query

SELECT Employee.First || ' ' || Employee.Last
FROM Dept, Employee
WHERE Dept.ID = Employee.Dept_ID
AND Dept.Name = 'IT'

We can then examine the equivalent symbolic tree representation of this query plan
in Figure 1. Conceptually, rows of relational data (tuples) flow through the operation
nodes in the query plan from bottom to top. The final results of the query are then
pulled from the top.

Figure 1. Symbolic tree representation of the SQL query

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 2 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

When using a tree of nodes like this, we need to perform operations on the tree as a
whole. Possible operations include:

• Collect all tables referenced in the query plan.

• Collect all columns used in a subtree.

• Find the top join node in a query plan.

• Match a pattern in the tree and modify the tree.

The last operation is particularly useful because it lets us perform symbolic
manipulations on the tree. Using the Filter Pushdown pattern, we would first match a
pattern in the graph, then modify the tree at the point of the match. Here's the Filter
Pushdown pattern to match:

• Filter node F directly above a Join node J.

• F has a criteria that only involves a single table.

• J is an inner join.

We could then apply a tree manipulation to move the Filter node underneath the Join
node toward the related Table node. Manipulations like this (backed by the proper
relational theory) are at the heart of database query optimizers. The resulting tree is

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 3 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

shown in Figure 2:

Figure 2. Result of applying the Filter Pushdown optimization

The Visitor pattern is often used to separate a data structure (the tree, in this case)
from the algorithms that operate over the data structure. Later in this article, I'll
demonstrate both an object-oriented implementation in Java code and a functional
variant in Clojure.

Visitors in the Java language

If we want to implement the Visitor pattern in Java, we need first to represent our
nodes as Java classes. We can build a basic hierarchy as shown in Figure 3. Most
of these classes are simple data holders. For example, the Join class contains a
left-join expression, a right-join expression, a join type, and a join criteria.

Figure 3. Java domain classes

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 4 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Note that all of the objects in the domain hierarchy implement the Visitable
interface and the acceptVisitor method, looking like so:

public void acceptVisitor(Visitor visitor) {
visitor.visit(this);

}

This acceptVisitor method implements double dispatch, allowing the choice of
method call to depend not just on the concrete object type, but also on the visitor
type.

The visitor classes are shown in Figure 4. The base Visitor interface contains a
visit method for every concrete type in the domain. The AbstractVisitor
implements empty versions of all these methods to make writing concrete visitors
easier.

Visitor navigation

In addition to visiting each node, the visitor must decide which nodes should be
visited as children of the current node. It is possible to include the navigation in each
visitor, but it's better to separate the concerns of navigation and operation. In fact,
you can think of finding children on a per-type basis as a visitor operation that can
be encapsulated in a visitor itself. NavigationVisitor captures the tree
navigation operation and lets a more lightweight visitor come along for the ride.

Figure 4. Visitor interfaces

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 5 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Take a look at NavigationVisitor's methods:

public void visit(Join j) {
visitor.visit(j);
j.getCriteria().acceptVisitor(this);
j.getLeft().acceptVisitor(this);
j.getRight().acceptVisitor(this);

}

NavigationVisitor defers to another visitor instance but embeds the child
navigation. An example visitor might collect all Column instances in the entire tree
and would look like Listing 2:

Listing 2. CollectColumnsVisitor

package visitors;

import java.util.HashSet;
import java.util.Set;

import visitors.domain.Column;

public class CollectColumnsVisitor extends AbstractVisitor {
private final Set<Column> columns = new HashSet<Column>();

public Set<Column> getColumns() {
return this.columns;

}

@Override
public void visit(Column c) {

columns.add(c);
}

}

When this visitor finds a Column in the tree, it stores that into the set of all the
columns seen so far. Once the visitor completes, we can retrieve the full set of
Columns, as demonstrated in Listing 3:

Listing 3. Calling the CollectColumnsVisitor

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 6 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Node tree = createTree();
CollectColumnsVisitor colVisitor = new CollectColumnsVisitor();
NavigationVisitor v = new NavigationVisitor(colVisitor);
tree.acceptVisitor(v);
System.out.println("columns = " + colVisitor.getColumns());

Once you have this basic structure in place, you can add any of the following
optimizations:

• Navigation visitors that do pre, post, or custom navigation

• Avoid walking the entire tree

• Mutation of the tree while visiting

Incidental complexity in Java visitors

The Visitor pattern in the Java language partially addresses the classic expression
problem. Coined by Philip Wadler, the expression problem defines a program’s data
as a set of cases (types) and a set of operations over those cases. Imagine these as
the two dimensions of a table. Can you then add new data types and new operations
without recompiling and retain static types?

The Visitor pattern creates a scenario where adding operations (new visitors) over
the set of existing data types is easy. Adding new data types (classes) with visitors is
difficult, however, as the Visitor pattern requires a visit() method for all concrete
types. You can alleviate this somewhat by having an abstract superclass that
contains empty implementations of all methods for all visitors. In this case, you can
modify just the abstract class and the code will compile. Visitors don’t meet the
standard of no recompilation but they do minimize the changes required to add a
new operation. If you also consider that adding a new type happens much less often
than adding a new operation, the overall pattern makes good compromises: certainly
better than encoding a new operation into a new method on all concrete types.

While implementing the Visitor pattern in the Java language allows us to satisfy
some basic goals, it also incurs incidental complexity: boilerplate visit() methods
in every concrete class, defining navigation visitors, and so forth. Leveraging
Clojure's functional programming tools to implement the Visitor pattern is one way to
get around this incidental complexity, while still programming on the JVM.

Trees in Clojure

Clojure provides a core set of persistent, immutable data structures: lists, vectors,
maps, sets, and queues. Note that persistent here refers to a property of data

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 7 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

modification, and not to data storage.

When a persistent data structure is "modified," the data is not mutated. Rather, a
new immutable version of the data structure is returned. Structural sharing is the
technique used to make Clojure's persistent data structures efficient. Structural
sharing relies on the data's immutability to make sharing possible between the old
and new instances of the data.

Immutability also allows us to simplify reasoning about concurrency and provide
cheap reads of shared data. If the data is immutable, it can be read without acquiring
a lock. If some other thread "changes" the data, the result will be a different instance
of the data, which might share much of the same internal structure. In a functional
programming language, persistent data structures are also important for writing pure
functions, free of side-effects.

Clojure's persistent data structures

Making a basic linked-list data structure persistent is the easiest exercise; here, a list
in Clojure is bound to a var named "a":

(def a (list 1 2 3))

Clojure is a Lisp variant, so evaluation occurs by first reading an expression as a
Clojure data structure (usually a list), then evaluating each expression in the data
structure. Finally, we invoke the first item in the list as a function with the rest of the
items as arguments. The special form "def" will create a namespaced variable
identified by the first symbol where the value is the expression following it. Each
value in this linked list is held in a cell that contains a value and a pointer to the next
cell (or nil to mark the end of the list), as shown in Figure 5:

Figure 5. Linked list

If we then add a new value to the head of the list, it's known as constructing (or
"cons-ing") a new list. The new list will share all the cells from the original:

(def b (cons 4 a))

Figure 6. Linked list cons

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 8 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

We can use rest or other functions to access other parts of the list, but new lists
created from the original list still share the original structure. Two key functions for
operating on lists (and other sequences of values) are first (which returns the first
item) and rest (which returns a list of the rest of the items).

(def c (cons 5 (rest a)))

Figure 7. More items in a linked list

Functional data structures
Clojure’s other persistent structures, like vectors and maps, are
implemented with hash-array mapped tries, as described by Phil
Bagwell in "Ideal Hash Trees" (see Resources). That work is
beyond the scope of this article, but all of the core data structures in
Clojure use this technique.

The key difference in how we use Clojure versus Java data structures is that we do
not mutate them in place; instead we describe an update and receive a new
reference to an immutable structure that reflects the changes. When considering a
tree of nodes where each node is an immutable data structure, we must consider
how to modify a node or nodes inside the tree without modifying the entire tree.

Tree nodes

Before we consider the question of tree manipulation, let’s consider the data
structure we'll use to define each node of the tree. We want a well-defined set of
properties for each type of node. It's also helpful if each node of the tree has a type
visible to Clojure, which can be used when choosing a function implementation at
runtime.

When considering a set of keys and values, the obvious choice in Clojure is the
map, which stores key-value pairs. The code sample in Listing 4 demonstrates how
to create a map, add values to it, and get values from it:

Listing 4. A map in Clojure

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 9 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

user> (def alex {:name "Alex" :eyes "blue"})
#'user/alex
user> alex
{:name "Alex", :eyes "blue"}
user> (:name alex)
"Alex"
user> (assoc alex :married true)
{:married true, :name "Alex", :eyes "blue"}
user> alex
{:name "Alex", :eyes "blue"}

Each of the keys in the map is a Clojure keyword, which always evaluates to itself
and is identical to the same keyword used anywhere else. It is idiomatic to use
keywords as keys in a map. Keywords are also functions. When invoked with a map,
keyword functions look themselves up in the map and return their own value.

Adding entries to a map is done with assoc ("associate"), and removal is done with
dissoc ("dissociate"). If you print a map you'll see commas between map entries,
but it's purely for readability; commas are treated as whitespace in Clojure. At the
end of Listing 4, assoc will return and print a new map, but the original map will be
unmodified. The two maps will structurally share much of the same data.

Typed maps

Listing 5 shows some helper functions used to create maps with a well-known
:type key. This type will be used later to dispatch polymorphic behavior. The
node-type function extracts the "type" of a node based on the :type key.

Listing 5. Implementing typed tree nodes

(ns zippers.domain
(:require [clojure.set :as set]))

(defn- expected-keys? [map expected-key-set]
(not (seq (set/difference (set (keys map)) expected-key-set))))

(defmacro defnode
"Create a constructor function for a typed map and a well-known set of
fields (which are validation checked). Constructor will be

(defn new-&node-type> [field-map])."
[node-type [& fields]]
(let [constructor-name (symbol (str "new-" node-type))]

`(defn ~constructor-name [nv-map#]
{:pre [(map? nv-map#)

(expected-keys? nv-map# ~(set (map keyword fields)))]}
(assoc nv-map# :type (keyword '~node-type)))))

(defn node-type [ast-node] (:type ast-node))

You might be seeing lots of new and advanced features in Listing 5, but don't panic!
This code is included for the advanced Lisp or Clojure programmer, and it isn't
essential to understand every detail. The core of the listing is the defnode macro
that takes a node type and a vector of field names, and creates a constructor
function for creating maps of that type. When the constructor is called, the fields

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 10 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

being passed are checked to determine whether they match the expected fields, and
an error is thrown if not. One of the benefits of Clojure as a Lisp variant is that code
is data (also known as homoiconicity). Macros exploit this fact by manipulating code
as data before evaluating it.

Listing 6 implements the Clojure equivalent to the Java domain classes:

Listing 6. Clojure domain types zippers/core.clj

(defnode column [table column])
(defnode compare-criteria [left right])
(defnode concat [args])
(defnode filter [criteria child])
(defnode join [type left right])
(defnode project [projections child])
(defnode table [name])
(defnode value [value])

Walking the trees

Our challenge now is to take a tree of Clojure maps and traverse or manipulate it.
Because Clojure trees are immutable data structures, any manipulation requires that
we return a new, modified tree. As a first step, we can think back to our Java
language implementation of the Visitor pattern and try something similar. We want to
define an operation that walks over our tree of maps, searches for a pattern in the
tree, and applies a manipulation at that point.

For example, we could search for concat functions with all string-literal values, then
concatenate the arguments into a string value as in Figure 8:

Figure 8. Transforming a tree to evaluate the concat function

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 11 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Similar to our Java Visitor solution, we could implement an eval-concat operation
for every node type in the tree using a multimethod. In Clojure, a multimethod is a
special kind of function that breaks invocation into two steps. When the function is
invoked, a custom dispatch function is evaluated with the function's arguments. The
resulting dispatch-value is then used to choose one of many possible function
implementations.

(defmulti <function-name> <dispatch-function>)
(defmethod <function-name> <dispatch-value> [<function-args>] <body>)

A multimethod is defined by two macros: defmulti and defmethod. These
macros are bound together by the <function-name>. The defmulti macro
specifies the dispatch function to use when first invoked and a few other optional
features. There will be many defmethod implementations, each specifying a
dispatch-value that triggers execution, and a body of functions to execute when
triggered.

Dispatching on type

The most common dispatch function in Clojure is simply the class function, such
that invocation of the function implementation is based on the type of the sole
function argument passed to the multimethod.

In our example, each node is a map and we want to use the node-type function to
distinguish between the different types of maps representing each node. We then
create implementations of the multimethod for each type we want to handle, using
defmethod.

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 12 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

If the dispatch function does not determine any multimethod match possibilities, a
:default dispatch value will be called, assuming it exists. In our example, we use
a :default implementation to specify that all unlisted nodes should return
themselves without modification. This serves as a useful base case, similar to a
base Visitor class in the classic Visitor pattern.

Listing 7 is the complete implementation of the eval-concat multimethod. In this
example, you see the use of functions like new-concat and
new-compare-criteria, which were created by the defnode macro we called
back in Listing 5.

Listing 7. Walking a tree with a multimethod

(defmulti eval-concat node-type)
(defmethod eval-concat :default [node] node)
(defmethod eval-concat :concat [concat]

(let [arg-eval (map eval-concat (:args concat))]
(if (every? string? arg-eval)

(string/join arg-eval)
(new-concat {:args arg-eval}))))

(defmethod eval-concat :compare-criteria [{:keys (left right) :as crit}]
(new-compare-criteria {:left (eval-concat left)

:right (eval-concat right)}))

Listing 8 is an example of theeval-concat multimethod in use. This example
builds up a small tree of nodes, then executes the multimethod eval-concat on
those nodes to find a concat of string literals. It then replaces them with the
concatenated string.

Listing 8. Using the eval-concat multimethod

(def concat-ab (new-concat {:args ["a" "b"]}))
(def crit (new-compare-criteria {:left concat-ab

:right "ab"}))

(eval-concat crit)

Note that the eval-concat in Listing 7 only partially solves our problem. For a full
solution, we would need to create a defmethod for every class that might hold an
expression, and thus a concat node. While not hard to do, it's tedious work.

Specifically, much of the "weight" of the solution involves traversing the data
structure. All of the actual tree modification is isolated in the :concat defmethod.
It would be better if traversing the data structure was a separate and generic
operation.

Data traversal with clojure.walk

Clojure's core API includes a library, clojure.walk, that is specifically for

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 13 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

traversing data structures. The library's functionality is based on a core function
named walk, although walk is rarely directly called. Instead, it is far more common
to access the functionality via the prewalk and postwalk functions. Both functions
walk the tree in depth-first order but they differ in whether a node is visited before or
after its children. Both versions take a function to apply at each node that returns a
replacement node (or the original node).

For example, Listing 9 shows a postwalk operating on a heterogeneous tree of
data. We first walk the tree and pass a function that merely prints the node being
visited and returns the node. Then we call postwalk, passing in a function that
looks for integers and increments them by one, leaving everything else the same.

Listing 9. The postwalk function at work

user> (def data [[1 :foo] [2 [3 [4 "abc"]] 5]])
#'user/data

user> (require ['clojure.walk :as 'walk])
nil

user> (walk/postwalk #(do (println "visiting:" %) %) data)
visiting: 1
visiting: :foo
visiting: [1 :foo]
visiting: 2
visiting: 3
visiting: 4
visiting: abc
visiting: [4 abc]
visiting: [3 [4 abc]]
visiting: 5
visiting: [2 [3 [4 abc]] 5]
visiting: [[1 :foo] [2 [3 [4 abc]] 5]]
[[1 :foo] [2 [3 [4 "abc"]] 5]]

user> (walk/postwalk #(if (number? %) (inc %) %) data)
[[2 :foo] [3 [4 [5 "abc"]] 6]]

Using postwalk and prewalk is beneficial because they already understand how
to walk almost all of the core Clojure data structures — such as vectors, lists, sets,
and maps (exceptions include sorted maps and records). When using
clojure.walk, we don't need to specify any navigation code; instead we supply
only the essential code that finds the node to modify and modifies it.

Let’s apply postwalk to our eval-concat problem from Listing 10. When we find a
node of type :concat, we check whether it can be evaluated and return a new
value node in place of the original :concat node.

Listing 10. The eval-concat problem with postwalk

(defn eval-concat [node]
(if (and (= :concat (node-type node))

(every? string? (:args node)))

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 14 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

(string/join (:args node))
node))

(defn walk-example
[node]
(walk/postwalk eval-concat node))

That’s a much more satisfying implementation. All of the traversal is handled for us
inside postwalk and we only need to supply the function to find and modify the tree
in place.

Recursion in the Visitor pattern

One issue with both the original Visitor pattern and this implementation with
postwalk is that the pattern is recursive (see Figure 9). When evaluating the
modification function at a node, all of the parent-node traversals are on the stack.
This is obvious in the Visitor implementation where you see all of the recursive calls
to the eval-concat function. But even if it's tidily hidden away in postwalk, the
structure is the same.

Figure 9. Recursive calls with clojure.walk

Recursion is not necessarily bad — it’s easy to understand and for small trees is
unlikely to be an issue. But in the case of larger trees, we might prefer to traverse
iteratively, in order to preserve memory. The question is, can we implement the
Visitor pattern without recursion?

Clojure's functional zippers

A well-known solution to the problem of traversing and modifying a tree in functional
programming is the zipper, most famously described by Gérard Huet (see
Resources). A zipper is a way of representing a data structure with a local context,
such that navigation (iteration) and modification from the current context are, for the
most part, constant-time. All changes are local to the context.

A tree zipper is typically composed of a path from the root to the current location in
the tree, plus the subtree context at the focal node. The name "zipper" refers to
moving up and down the tree like a zipper, with the part above the focal node as the

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 15 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

open part of the zipper and the local state as the closed part.

In a typical tree, constant-time access is only available at the root (the node
referenced by other code). Zippers allow that focal node to travel around the tree,
getting constant-time access wherever you are (not including the traversal time to
reach the node). A common way to think about zippers is that they are like a tree of
rubber bands: you can "pick up" the tree at any node and it becomes like a root with
the left, right, and parent paths hanging from that focal node.

The focal-node data structure is commonly referred to as a location, or "loc." The
location contains the current subtree and the path to the root. Let’s consider a
simplified version of the small tree structure from Figure 8. This time, we'll simplify
the example by using vectors rather than maps.

Figure 10 illustrates how the location structure changes as we traverse the tree, here
going down (always to the first left child), then right, then down. In each case, the
new node becomes the focal point and the rest of the tree is represented as left
nodes, right nodes, and parent nodes in relation to the focus.

Figure 10. Zipper loc structure while traversing the tree

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 16 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

As we traverse the tree, changes are local to the current focal node, meaning all
constant-time operations except for up. That is the key benefit of zippers.

Zippers in Clojure

The Clojure core API contains an elegant zipper implementation in clojure.zip, with
the API shown in Listing 11. I have divided the API functionality into several
categories: construction, context, navigation, enumeration, and modification.

The construction functions allow you to create a new zipper (that is, a location). The
core function for creating new zippers is zipper, which is based on three key
functions:

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 17 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

• branch? takes a node and returns whether it’s possible for that node to
have children.

• children takes a node and returns the children of that node.

• make-node takes a node, a new set of children, and returns a new node
instance.

The seq-zip, vector-zip, and xml-zip functions are helpers that call zipper
with predefined implementations for sequences, vectors, and XML trees. (This
implementation does not parse XML — it expects a data structure that represents
XML, emitted by clojure.xml/parse.)

Listing 11. clojure.zip API

;; Construction
(zipper [branch? children make-node root]) - creates new zipper
(seq-zip [root]) - creates zipper made from nested seqs
(vector-zip [root]) - creates zipper made from nested vectors
(xml-zip [root]) - creates zipper from xml elements

;; Context
(node [loc]) - return node at current location
(branch? [loc]) - return whether the location is a branch in the tree
(children [loc]) - return the children of a location’s node
(make-node [loc node children]) - make a new node for loc with the old node and the new

children
(path [loc]) - return a seq of nodes leading to this location from the root
(lefts [loc]) - return a seq of nodes to the left
(rights [loc]) - return a seq of nodes to the right

;; Navigation
(left [loc]) - move to left sibling or return nil if none
(right [loc]) - move to right sibling or return nil if none
(leftmost [loc]) - move to leftmost sibling or self
(rightmost [loc]) - move to rightmost sibling or self
(down [loc]) - move to the leftmost child of the current location
(up [loc]) - move to the parent of the current location
(root [loc]) - move all the way to the root and return the root node

;; Enumeration
(next [loc]) - move to the next node in a depth-first walk
(prev [loc]) - move to the previous node in a depth-first walk
(end? [loc]) - at end of depth-first walk

;; Modification
(insert-left [loc item]) - insert a new left sibling
(insert-right [loc item]) - insert a new right sibling
(insert-child [loc item]) - insert a new leftmost child under current node
(append-child [loc item]) - inserts a new rightmost child under current node
(replace [loc node] - replaces the current node with a new node
(edit [loc edit-fn args]) - replace the current node with the results of edit-fn
(remove [loc]) - remove the current node and moves to the previous node in a depth-first

walk

The context functions provide information about the current location in the tree and
the navigation functions should be straightforward based on the previous discussion.
Listing 12 shows an example of how to use the context and navigation functions to
walk into and examine the tree:

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 18 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Listing 12. Traversing a tree of vectors with a zipper

> (def vz (zip/vector-zip [:compare [:concat "a" "b"] "ab"]))
> (println (zip/node (zip/down vz)))
:compare
> (println (zip/rights (zip/down vz)))
([:concat a b] ab)
> (println (zip/node (zip/right (zip/down vz))))
[:concat a b]
> (println (zip/node (zip/down (zip/right (zip/down vz)))))
:concat

Zipper Iteration

A zipper's enumeration functions allow you to traverse the entire tree in depth-first
order, as shown in Figure 11. This traversal is interesting because it is iterative, not
recursive, which is a key difference between zipper traversal and the prior
clojure.walk implementation.

Figure 11. Iterative tree traversal with zippers

A tree visitor with zippers

Zipper enumeration and the zipper edit function give us the tools to build a
zipper-based visitor, which consists of iterating the tree and executing a visitor
function at each node. We can put these tools together as seen in Listing 13:

Listing 13. A zipper-based editor

(defn tree-edit [zipper matcher editor]
(loop [loc zipper]

(if (zip/end? loc)
(zip/root loc)
(if-let [matcher-result (matcher (zip/node loc))]

(recur (zip/next (zip/edit loc (partial editor matcher-result))))
(recur (zip/next loc))))))

The tree-edit function takes a zipper structure, a matcher function, and an
editor function. This function starts with the Clojure special form loop, which
creates a target for the recur at the end of the function. In Clojure, loop/recur

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 19 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

indicates tail recursion and does not consume stack frames like other recursive calls.
The zip/next call iterates to the next node in a depth-first walk through the tree.

The iteration terminates when zip/end? returns true. At that time, zip/root will
zip/up to the top of the tree, applying any changes along the way, and return the
root node. In the non-termination case, the matcher function is applied to the
current loc. If it matches, the node and the result of the matcher are passed to the
editor function for possible modification and iteration continues from the modified
node. Otherwise, iteration continues from the original node. The partial function
partially applies a function with a subset of its arguments and returns a new one that
takes fewer arguments. In this case, we partially apply editor so that edit
receives a new function with the appropriate signature.

We also need a zipper implementation that can deal with the standard Clojure data
structures during traversal. The tree-zipper in Listing 14 implements the
functions that enable the core collection types to allow any Clojure data structure
built from those types to become a zipper: branch?, children, and make-node. I
chose to use a multimethod for each zipper function, which allows me to dynamically
extend this zipper later to other types, simply by adding new defmethod
implementations.

Listing 14. Tree zipper implementation

(defmulti tree-branch? class)
(defmethod tree-branch? :default [_] false)
(defmethod tree-branch? IPersistentVector [v] true)
(defmethod tree-branch? IPersistentMap [m] true)
(defmethod tree-branch? IPersistentList [l] true)
(defmethod tree-branch? ISeq [s] true)

(defmulti tree-children class)
(defmethod tree-children IPersistentVector [v] v)
(defmethod tree-children IPersistentMap [m] (seq m))
(defmethod tree-children IPersistentList [l] l)
(defmethod tree-children ISeq [s] s)

(defmulti tree-make-node (fn [node children] (class node)))
(defmethod tree-make-node IPersistentVector [v children]

(vec children))
(defmethod tree-make-node IPersistentMap [m children]

(apply hash-map (apply concat children)))
(defmethod tree-make-node IPersistentList [_ children]

children)
(defmethod tree-make-node ISeq [node children]

(apply list children))
(prefer-method tree-make-node IPersistentList ISeq)

(defn tree-zipper [node]
(zip/zipper tree-branch? tree-children tree-make-node node))

Concat evaluation

In Listing 15, we revisit our problem of evaluating a concat function by creating a
match function (to find concat nodes with string-literal arguments) and an editor

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 20 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

function (to evaluate the concat). The can-simplify-concat function acts as the
matcher function and the simplify-concat function acts as the editor.

Listing 15. Concat evaluation with the zipper editor

(defn can-simplify-concat [node]
(and (= :concat (node-type node))

(every? string? (:args val))))

(defn simplify-concat [_ node]
(string/join (:args node)))

(defn simplify-concat-zip [node]
(tree-edit (tree-zipper node)

can-simplify-concat
simplify-concat))

(simplify-concat-zip crit)

So far, we have achieved almost the same level of essential complexity as with the
clojure.walk implementation in Listing 10. One difference between Listing 10 and
Listing 15 is that the walk version combined the "match" and "edit" parts, which are
split in the zipper version. Another difference is that, internally, the zipper version
uses a linear tail-recursive traversal of the data structure instead of a recursive
traversal. This reduces memory usage during the iteration because the stack depth
is constant instead of dependent on the height of the tree.

An even better tree visitor

Examining visitors that are useful in practice turns up several common categories
based on the goal of the visitor:

• Finder searches for the first node matching some criteria and returns it.

• Collector searches for all nodes matching some criteria and returns
them.

• Transformer searches for a match in the tree, mutates the tree at that
point, and returns it.

• Event generator traverses the tree and fires events (think DOM to SAX).

Of course, you may find many other curious combinations and extensions of these
categories as you begin to use and manipulate trees in practice. Our current
tree-edit function does not allow the visitor to indicate that iteration should stop
or to carry state through the traversal, so it is difficult to create Finder or Collector
visitors without using external state holders.

Another observation after writing many visitors is that some common pieces of

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 21 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

functionality should be reusable between visitors. For example, both a finder and a
collector are looking to evaluate a criteria on a node and determine whether that
node matches the criteria. Ideally, we would like to reuse a function that does this for
both cases. Similarly, it is useful to create visitors that can check for cases that
should cause skipping to the next node or aborting the iteration completely.

Listing 16 shows an enhanced visitor that applies a set of visitors at each node,
passes state throughout the iteration, and allows for early exit of a node or the entire
iteration. Note the two functions in use here:

• tree-visitor is similar to the tree-edit function previously
discussed. It iterates through the tree via the zipper and terminates with
end?. At each node, the tree-visitor calls visit-node, our second
function. The primary difference in tree-visitor is that the
visit-node function returns several items: a new-node, a new-state,
and a stop flag. If stop is true, then iteration will exit immediately. The
state is primed with initial-state and passed throughout the
iteration, allowing the visitor functions to manipulate it in whatever way
they desire. At the end of tree-visitor, both the final state and the
final tree are returned.

• visit-node takes a list of visitor functions, each with a signature (fn
[node state]) that returns a context map, which can contain the keys
:node, :state, :stop, or :jump. If :node or :state are returned,
they are replacements for the incoming node or state. Passing :jump
indicates that iteration should jump to the next node and skip all
remaining visitors for this node. Passing :stop indicates that all iteration
should cease.

Listing 16. Enhanced tree visitor

(defn visit-node
[start-node start-state visitors]
(loop [node start-node

state start-state
[first-visitor & rest-visitors] visitors]

(let [context (merge {:node node, :state state, :stop false, :next false}
(first-visitor node state))

{new-node :node
new-state :state
:keys (stop next)} context]

(if (or next stop (nil? rest-visitors))
{:node new-node, :state new-state, :stop stop}
(recur new-node new-state rest-visitors)))))

(defn tree-visitor
([zipper visitors]

(tree-visitor zipper nil visitors))
([zipper initial-state visitors]

(loop [loc zipper
state initial-state]

(let [context (visit-node (zip/node loc) state visitors)
new-node (:node context)

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 22 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

new-state (:state context)
stop (:stop context)
new-loc (if (= new-node (zip/node loc))

loc
(zip/replace loc new-node))

next-loc (zip/next new-loc)]
(if (or (zip/end? next-loc) (= stop true))

{:node (zip/root new-loc) :state new-state}
(recur next-loc new-state))))))

Using enhanced visitor functions

So what can we do with our new and improved visitor? Listing 17 shows an example
collector that looks for strings in our tree. The string-visitor function looks for a
string node and returns an updated state that captures the node. The
string-finder calls the tree-visitor with string-visitor and returns the
final state.

Listing 17. String finder

(defn string-visitor
[node state]
(when (string? node)

{:state (conj state node)}))

(defn string-finder [node]
(:state
(tree-visitor (tree-zipper node) #{} [string-visitor])))

We can easily make a finder, too — let’s make one that finds the first node of a
certain type in Listing 18. The matched function is like our prior visitor functions but
takes a node type to search for at the beginning. When find-first calls the
visitor, it partially applies the type into matched, yielding a function that just takes
node and state as expected. Note that the matched function returns stop=true
to exit the iteration.

Listing 18. Node finder

(defn matched [type node state]
(when (of-type node type)

{:stop true
:state node}))

(defn find-first [node type]
(:state
(tree-visitor (tree-zipper node) [(partial matched type)])))

Passing multiple functions

So far, we haven’t actually leveraged the ability to pass multiple functions. The key
here is that we want to decompose the functionality in our visitors into smaller pieces
and then recombine them to build composite functionality. For example, in Listing

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 23 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

, we rewrote our concat evaluator to look for :concat nodes (function 1) that have
all strings (function 2) and then evaluate the concat (function 3).

The first type evaluator visitor is generated in the generic "on" function. This function
returns an anonymous visitor function that will jump to the next node if the node is
not of the correct type. This function is completely reusable by any chain of visitors
that needs to optionally evaluate the rest of the chain based on type. The second
all-strings function similarly generates a conditional visitor that looks for a
concat node with all string args.

Finally, we create a multimethod to handle the evaluation, called eval-expr. In this
case, we default to evaluating anything by just returning itself. We add additional
implementations for :concat and :compare-criteria. This multimethod is
turned into a visitor with the node-eval function.

Assembling this chain of visitors into a composite visitor is then easy in
chained-example, shown in Listing 19:

Listing 19. Using multiple small visitors

(defn on [type]
(fn [node state]

(when-not (of-type node type)
{:jump true})))

(defn all-strings []
(fn [{args :args} _]

(when-not (every? string? args)
{:jump true})))

(defmulti eval-expr node-type)
(defmethod eval-expr :default [x] x)
(defmethod eval-expr :concat [{args :args :as node}]

(string/join args))
(defmethod eval-expr :compare-criteria [{:keys (left right) :as node}]

(if (= left right) true node))

(defn node-eval [node state]
{:node (eval-expr node)})

(defn chained-example [node]
(:node
(tree-visitor (tree-zipper node)

[(on :concat)
(all-strings)
node-eval])))

It’s easy to reuse several pieces of this implementation (like the on and node-eval
functions) in other visitor chains as well. The notion of a visitor chain provides a very
flexible framework with many options for how you structure and reuse the visitors on
the tree.

Doing more with Clojure visitors

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 24 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

This article has just scratched the surface of using zippers in the Visitor pattern; the
point of it is to whet your appetite for further exploration. For example, you might
have noticed that the structures of on and all-strings in Listing 18 look similar.
Both are functions that wrap a filter into a visitor. Instead of chaining functions that
contain filters, we could wrap a filter visitor around conditions composed using
normal Clojure connectors. The addition of custom macros to create and combine
those conditions could make the code more composable.

In fact, pattern-matching libraries (like the new Clojure core.match library; see
Resources) let you specify patterns with wildcards that should match in a data
structure. It is not hard to integrate a pattern-matching library with the tree visitor to
get to a point where visitors can leverage tree patterns. This is a powerful step
closer to talking about your problem in the terms of your problem, letting the
language itself get out of the way.

Another aspect of the Visitor pattern not closely examined here is iteration order. At
Revelytix, we always traverse the nodes in the depth-first order of the zipper
enumeration. In some cases, we may actually want to traverse these nodes in the
reverse order, skip certain nodes or subtrees, or something else. Iteration essentially
consists of three operations: start (find the start loc from the root node); next
(given a loc, find the next loc), and end? (is the current loc the end of the
iteration?). It is easy to abstract these functions in our current tree-visitor function
and allow for pre-built and custom iteration strategies.

In Clojure, all code is also data that happens to be stored as trees of s-expressions.
You can therefore use all of the techniques described in this article not just to modify
your data, but to modify your code. You can find some examples of this in the core
Clojure API's more advanced macro utilities.

I hope that you can use the ideas presented here to build your own visitors in Clojure
or your language of choice, and to continue exploring ways to structure and
manipulate your data. See the Resources section for a link to download all of the
code and examples used in this article, which are stored on Github.

Acknowledgements

Many thanks go out to my colleagues at Revelytix who developed code similar to
what's in this article for use in our own products. In particular, I am indebted to David
McNeil for many fine hours talking through ideas and solutions on a whiteboard or
pairing in Emacs, as well as for doing the heavy lifting to extend libraries like
clojure.walk, clojure.zip, and matchure.

I am also thankful to my colleague Alex Hall for seeing the need and doing the
implementation for the post-order iteration enhancement.

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 25 of 27

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Learn more about Clojure on developerWorks:

• "The Clojure programming language" (Michael Galpin, 2009)

• "Clojure and concurrency" (Michael Galpin, 2010)

• "Solving the Expression Problem with Clojure 1.2" (Stuart Sierra, 2010)

• "Using CouchDB with Clojure" (Ryan Senior, 2011)

• See Wikipedia's entry on zippers and Haskell's documentation for an overview
of zippers.

• Gérard Huet introduced the concept of zippers in the article "Functional Pearl:
The Zipper" (Journal of Functional Programming, Volume 7, Cambridge
University Press, 1997).

• For more about Clojure zippers, see Luke VanderHart's video presentation on
Blip.tv (2010).

• Brian Marick's "'Editing' trees in Clojure with clojure.zip" (Exploration Through
Example, 2010) is a tutorial introduction to clojure.zip.

• See "Pattern Matching & Predicate Dispatch" (David Nolen, NYC Clojure Users
Group, 2011) for an introduction to core.match.

• Philip Wadler, a principal designer of Haskell, defined the expression problem in
1998, while a researcher at Bell Labs.

• "Ideal Hash Trees" (Philip Bagwell, Es Grands Champs, Volume 1195, 2001)
describes the data structure at the heart of Clojure's persistent data structures.

Get products and technologies

• Download the source code and examples from this article.

• Download core.match: An optimized pattern-matching and predicate-dispatch
library for Clojure.

About the author

Alex Miller
Alex Miller is a senior engineer with Revelytix, building federated
semantic web query technology. He has been working with Clojure
full-time for two years. Prior to Revelytix, Alex was technical lead at

developerWorks® ibm.com/developerWorks

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 26 of 27

http://www.ibm.com/developerworks/opensource/library/os-eclipse-clojure/
http://www.ibm.com/developerworks/java/library/wa-clojure/index.html
http://www.ibm.com/developerworks/java/library/j-clojure-protocols/
http://www.ibm.com/developerworks/java/library/j-couchdb-clojure/?ca=drs-
http://en.wikipedia.org/wiki/Zipper_(data_structure)
http://www.haskell.org/haskellwiki/Zipper
http://clojure.blip.tv/file/4503162/
http://www.exampler.com/blog/2010/09/01/editing-trees-in-clojure-with-clojurezip/
http://vimeo.com/27860102
http://www.daimi.au.dk/~madst/tool/papers/expression.txt
https://github.com/puredanger/zippers
https://github.com/swannodette/match
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Terracotta, an engineer at BEA Systems, and chief architect at
MetaMatrix. His interests include Java, concurrency, distributed
systems, languages, and software design. Alex enjoys tweeting as
@puredanger and blogging at http://tech.puredanger.com. Alex is the
founder of the Strange Loop developer conference and the Lambda
Lounge group for the study of functional and dynamic languages. He
likes nachos.

ibm.com/developerWorks developerWorks®

Tree visitors in Clojure Trademarks
© Copyright IBM Corporation 2011 Page 27 of 27

https://twitter.com/#!/puredanger
http://tech.puredanger.com
http://thestrangeloop.com
http://lambdalounge.org
http://lambdalounge.org
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Manipulating symbolic trees
	Visitors in the Java language
	Incidental complexity in Java visitors
	Trees in Clojure
	Walking the trees
	Clojure's functional zippers
	A tree visitor with zippers
	An even better tree visitor
	Doing more with Clojure visitors
	Resources
	About the author

